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An initial state consisting of sugar solution lying above a denser salt solution in a 
Hele-Shaw cell is unstable to disturbances that evolve into long, slender fingers. An 
analysis of the structure of fully evolved (infinitely long) fingers that are independent 
of the vertical coordinate concludes that fingers with a width of the order of the 
buoyancy-layer thickness have maximum growth rate. Since effective gravity can be 
altered by inclining the Hele-Shaw cell toward the horizontal, fingers of different 
preferred widths can be established. An abrupt change of the angle of inclination 
changes the preferred width. A stability analysis of the resulting initial-value problem 
shows that perturbations with a vertical scale of the order of the buoyancy-layer 
thickness grow, and fluid from each finger penetrates laterally into the two adjacent 
fingers. The unstable modes resemble those observed experimentally by Taylor & 
Veronis (1986). It turns out that all vertically uniform fingers, even ones with the 
preferred width of the basic state, are unstable to a non-oscillatory peturbation that 
changes straight fingers to ones that have a vertically wavy structure. In  all cases 
the vertical scale of the most unstable disturbance is of the order of the buoyancy- 
layer thickness. Also included is a discussion of the need for a model describing the 
transient evolution of fingers and particularly one that contains an analysis of the 
role of the transition region between the salt-finger zone and the reservoirs above and 
below. 

1. Introduction 
In describing a series of experiments to study the evolution of salt fingers in a 

Hele-Shaw cell, Taylor & Veronis (1986) reported several features that have received 
little or no attention in the past. An initially two-layer configuration with a sugar 
solution lying above a slightly denser salt solution becomes unstable to a disturbance 
that evolves rapidly into an array of very narrow fingers. The growing length of the 
fingers is accompanied by a reduction of the mean salt and sugar gradients near the 
interface and a concomitant increase in the preferred finger width of the individual 
cells. The increase in width appears to be generated by the growth of fingers in the 
transition region between the finger zone and the reservoirs, where the mean 
stabilizing (salt) gradient is smaller and wider fingers are preferred. These wide fingers 
penetrate from the transition region into the finger zone, ‘swallowing’ narrower 
fingers along the way. The wider fingers are in turn replaced by even wider ones as 
the evolution continues. 

The phenomenon just described appeared to continue during the lifetime of the 
experiment even when the finger zone occupied essentially the entire depth of the 
tank. Evidently, aa the reservoirs disappear and the system runs down, the mean 
gradients continue to decrease and to support ever wider fingers which always seem 
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to penetrate in from the outer edges of the finger zone. The right-hand side of figure 
3 (a) shows a late stage in the evolution with interpenetrating fingers from above and 
below reflecting an unsettled state in one part of the experiment while a more uniform 
pattern of fingers existed in the left-hand part. 

The same gross behaviour can be expected for fingers in a regular fluid where the 
property distributions differ in detail from those of the Hele-Shaw cell but which 
should not affect the overall evolution of the system. However, the Hele-Shaw 
configuration does provide a control that is not possible with a a regular fluid. Tilting 
the experiment so that the plates are inclined at an angle 6 (< 90') to the horizontal 
reduces the effect of gravity and changes the preferred width of the fingers. Thus, 
one can generate a finger pattern with 6 at a given value and then abruptly change 
B so that a different scale is preferred. The adjustment of the system to a different 
value of effective gravity can be treated as an initial-value problem in which one 
examines the stability of the established pattern. This affords an analysis of the 
mechanism of instability that can be verified experimentally. 

The present study begins with a description of infinitely long fingers with a 
sinusoidal, horizontal distribution of properties and with vertically uniform gradients 
of salt and sugar. There is an infinite amount of potential energy available in the 
destabilizing sugar gradient. A specific finger width corresponds to steady-state 
equilibrium, but wider fingers grow exponentially in time and one particular width 
gives rise to maximum growth rate. 

These results are very similar to what one derives for a regular fluid (Stern 1969), 
but the buoyancy-layer scale, which characterizes the horizontal structure, is 
different. The buoyancy-layer scale can be described as the intrinsic scale that 
emerges from the linear balances obtained from the vertical momentum equation and 
the diffusion equation when the perturbations depend only on the horizontal 
coordinate x. Thus, take 

pw = gaT, 

where p, the Darcy coefficient of momentum dissipation, replaces the usual viscous 
term, - v a2/ax2. Eliminating T yields 

a2w gaq 
w,  -- -- 

ax2  KT 

and the buoyancy-layer scale, (pKT/gctq)t ,  emerges. In a regular fluid i t  is 
(4v~, /gaq) :  (Howard & Veronis 1987). 

The buoyancy-layer scale determines the horizontal distance required to adjust 
property differences across finger boundaries. The horizontal scale for equilibrium 
fingers and for those with maximum growth rate are proportional to the buoyancy- 
layer scale. Of particular interest in the present problem is the fact that this scale 
varies as 9-4. Thus, when effective gravity (g sin 6) is small, the scale is large, and vice 
versa. 

When the Hele-Shaw cell is inclined so that 6 is small, wide cells are generated. 
After these have been established, the apparatus can be raised upright so that the 
property difference across a finger boundary is adjusted in the narrower region of the 
reduced buoyancy-layer scale. Thus, thin boundary layers are generated on both sides 
of each finger boundary. When that boundary layer is perturbed by a disturbance 
with a vertical lengthscale of the order of the buoyancy-layer scale, the disturbance 
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grows and penetrates into the relatively uniform interior of the finger. Taylor & 
Veronis (1986) carried out an experiment following the procedure just described and 
recorded the evolved instability shown in figure 3(b). The stability analysis for the 
system is outlined in $3 and application to the stability of wide fingers is described 
in $4. The results support the qualitative description offered by Taylor & Veronis 
(1986) and summarized in $4. 

The instability just described develops because the established finger pattern is not 
consistent with the new conditions of the system. But one can also enquire into the 
stability of fingers with the 'preferred' scale, the one corresponding to maximum 
growth rate. If the latter become unstable, then the system will seek a configuration 
other than that of infinitely long fingers with sinusoidal, horizontal structure. In  that 
case, long straight fingers will not be observed even though they are exact solutions 
to the equations with the prescribed periodicity. 

Since the fingers with maximum growth rate are not steady, a rigorous stability 
analysis is not simple. However, if one explores the stability assuming that the basic 
fingers are quasi-steady and if the derived growth rate of the instability is much larger 
than that of the basic finger itself, the results will have meaning. That forms the basis 
for the calculations of $4.2 which show that long straight fingers are always unstable 
to a non-oscillating perturbation with a vertical lengthscale roughly that of the 
buoyancy-layer thickness. Both the rationale and the mathematical procedure are 
the same as Holyer (1984) used to come to the same conclusion about the stability 
of steady, long fingers in a regular fluid. 

The last case analysed here is one in which a pattern of thin fingers is established 
and then the apparatus is inclined toward the horizontal so that gravity is halved 
and slightly wider fingers are preferred, This system is also unstable to a non- 
oscillatory perturbation with a vertical lengthscale determined by the buoyancy- 
layer thickness. 

Qualitatively, the instability that occurs in all of the cases appears to be 
independent of the initial horizontal scale of the fingers. The finite-amplitude 
evolution of the perturbation is likely to vary as a function of the scale of the initial 
fingers, but that lies outside the scope of the present theory. Because the momentum 
balance in a Hele-Shaw cell is between buoyancy, pressure gradients and Darcy 
friction, inertial terms play no role in the instability. Consequently, the collective 
instability of Stern (1969) and Holyer (1981, 1984) is not obtained here. 

The article ends with speculation about the applicability of this approach to the 
actual physical system and with some qualitative conclusions based on the analysis 
and on the experiments. 

2. Fully developed fingers 

the Hele-Shaw form of viscous dissipation the Boussinesq equations take the form 
In  an infinite system with horizontally averaged gradients of T and S and with 
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where p (=  12v/d2: v is the kinematic viscosity and d is the gap width between the 
plates) is the Darcy drag coefficient, P is the pressure divided by (constant) density, 
& is the unit vertical vector and KT and K~ are the diffusion coefficients of T and S 
respectively, with K~ < KT.  The variable density in the buoyancy term is taken to 
be a linear function of T and S, 

P -= I-aT+BS, 
Po 

where a = - (l/po) (+/aT),  B = ( l / p o )  (ap/aS). (The negative sign for aT is appro- 
priate for temperature. This notation is retained even though the application in this 
article is to sugar and salt. With the present notation sugar would be represented 
by S and salt by - T . )  The horizontally averaged gradients of T and S are written 
separately as 

A vertically infinite system with constant mean gradients and z-independent 
variables takes the simpler (exact) form 

(2.5) 

and Bz and subscripts t and z refer to partial derivatives. 

PW = 9(aT-b% (2.6) 

(2.7) 

(2.8) 

where the hydrostatic pressure balance has been subtracted from (2.6). This system 
has solutions that are periodic in x and exponential in t ,  

(2.9) 

i- WT = KT T!,, 

st -!- W S z  = KS s,,, 

(w, aT,  BS) = (&, - p, -A!?) eA*t sin I ,  x, 

where 8, p ,  A!? must satisfy 
p& = -g(P-A!?), (2.10) 

(A* + KS I!:) 8 = &PSz. (2.12) 

Equations (2.10) to (2.12) lead to a dispersion relation between A, and 1,. However, 
for closer contact with the physics of the system (particularly for comparison with 
experiments) it is convenient to introduce the buoyancy flux ratio as an intermediate 
dependent variable (Schmitt 1979). 

Take 

(2.13) 

( w a s )  = -VA!?ezAlt, (2.14) 

and define the buoyancy flux ratio 

Then (2.10) becomes 

(2.15) 

(2.16) 



Buoyancy-layer role in determining salt-jinger structure 

0.4 I i 1.5 

331 

I 

- 1.0 

1 .o 1.5 2.0 2.5 3.0 

4 
FIGURE 1. Plots of A (curve l) ,  I,,, (curve 2) and 1, (curve 3) v8. Rp for infinitely long sugar-salt 

fingers with no vertical structure. 

Use of (2.11) and (2.12) yields 

where 
. -  

Then l2 and A can be evaluated as 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

The growth rate vanishes at & = 7RP when P takes on the equilibrium value 

(2.22) 

Since the right-hand side is O( l) ,  the lengthscale is that of a buoyancy-layer thickness, 
(PKT/SaT,)t* 

The growth rate is maximum at = 7Rp and becomes 

(1 - 7RJ2 
Rp(l -7) ' 

A, = 

with corresponding wavelength (referred to as optimum width in $ 5 )  

(2.23) 

(2.24) 



332 G .  Veronis 

1.5 

I 

1 .o 

0.5 

0 0.2 0.4 0.6 0.8 1 .o 
Fr 

FIGURE 2. (a) Wavelength and (b)  maximum growth rate us. F, for four values of Rp for sugar-salt 
fingers in the range of F, for which instability occurs. 

There is an infinite amount of potential energy in the unstable gradient SZ for a 
vertically infinite system so that even though there is an equilibrium wavelength 
given by (2 .22) ,  wider fingers can grow exponentially with time. The foregoing results 
are valid for the parameter ranges 

1 < R P < 7 - l ,  7 R p < F , < 1 .  (2.25) 

Figure 1 shows I , ,  I ,  and A ws. Rp for 7 = +, the value appropriate to the sugar-salt 
experiment. Plots of I ,  va. 1p, and of A ws. Fr are exhibited in figures 2 ( a  and b )  
respectively for a few values of Rp in the parts of the range (2.25) for which A 2 0. 
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3. Stability analysis 
The fully developed fingers derived above may be unstable to disturbances that 

depend on the vertical coordinate. The stability problem formulated below is based 
on the assumption that the basic finger solution does not change appreciably in the 
time that it takes for a disturbance to grow, i.e. time variations of the basic state 
are ignored. Therefore, the stability analysis has significance only if the growth rate 
of an unstable mode is much larger than the time rate of change of the finger itself. 

Introduce the perturbation stream function 

u=$kz, w = - - $ ,  (3.1) 

ma$ = -g(aT,-bSz). (3-2) 

= - T ~ $ ~ - w ~ T , + ~ $ ~ + K ~ V ~ T ,  (3.3) 

(3.4) 

into the vorticity equation to derive 

The linearized conservation equations for the perturbations of T and S are 

8, = -8; $=- W b s ,  +sz $, + K S  VaS, 

where superscript b corresponds to the basic state of $2, which is periodic in x with 
wavenumber 1 .  To apply Floquet theory (Ince 1926) the perturbation quantities are 
expressed as 

N 

n--N 
= Z exp[p,t+i(mz+(k+n)s)l,] (3.5) 

where i = 4- 1, ikl, is the characteristic exponent, and for convenience the 
coefficients Tn and S,  are multiplied by i. The summation is truncated to 2N+ 1 terms 
(see below). Substituting 

(3.6) ( ~ b ,  ~ b ,  sb) = (&, - P, -@ sin 1,x, 

and (3.5) into (3.3) and (3.4) let& to a dispersion relation in the form of a matrix 
systemwith - N < j < N :  

k + j + l  k + j - 1  -[&+*I S,+l +KB_, 
p - 1  

where the stream function has been replaced by its value from the vorticity equation 
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The following symbols are used in (3.7)-(3.9): 

(3.10) 

N has been taken large enough so that the real part of the eigenvalue p ,  corresponding 
to maximum growth rate, changes by less than 1 % when N is doubled, an accuracy 
that is achieved with N = 5 for fingers of maximum growth rate and N = 10 for wider 
fingers. 

4. Stability results 
4.1. Wide $fingers 

As described in the Introduction, the Hele-Shaw cell enables one to alter the effect 
of gravity by inclining the apparatus so that the plates of the cell are at an angle 
0 with the horizontal plane and g is replaced by gr = g sine. The non-dimensional 
wavenumber 1, of fingers with maximum growth rate is still given by (2.24), but the 
dimensional wavenumber 1, in (2.17) is altered by the factor (sine):. Thus, a small 
value of 6 will lead to a wide finger (small Z*). 

Taylor & Veronis (1986) generated fingers in an experiment with a layer of uniform 
sugar (8) solution above a layer of uniform salt (T) solution with a value of Rp 
( = aAT/pAS) of 2.0 and with the apparatus inclined 10' from the horizontal. Since 
the initial gradients, T, and sz, were very large, narrow fingers formed. As they 
penetrated into the reservoirs above and below, they redistributed T and S and 
reduced the mean gradients. As the system evolved, the width of the fingers increased 
and after some days an array of long, wide fingers was established. Figure 3 (a) shows 
a shadowgraph of a small portion of the system containing fingers with widths of 
approximately 0.8 cm. 

The Hele-Shaw cell was then raised upright ; accordingly, effective gravity was 
increased six-fold and the preferred finger width was decreased to 1 / 4 6  that of the 
established pattern. Fingers with the preferred width were generated via a small-scale 
instability that grew from the boundary region between fingers and penetrated the 
wide fingers at  an angle initially well below 45" (figure 3b). Eventually, the ends of 
these disturbances turned toward the vertical (which gives the illusion that the angle 
of penetration is steeper) and joined with similar features above and below to 
establish a pattern of narrower fingers. 

The pattern of wide cells shown in figure 3(a) was observed five days after the 
experiment had been started. By that time the fingers had penetrated to the top and 
bottom of the Hele-Shaw cell, and since no measurements of the mean gradients, 
and&, were made, the appropriate value of Rp is not known. The stability calculation 
is based on the initial reservoir concentrations which give Rp = 2. 

The instability is explored using a model with an initial pattern of wide fingers 
corresponding to g sin (10'). For the perturbation the full value of gravity is used 
(consistent with fingers of width 1 / 4 6  that of the initial pattern), i.e. the model 
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FIQKJRE 3. (a) Sugar-salt fingers that have evolved from an initial two-layer configuration in a 
Hele-Shew cell inclined 10' from horizontal. Fingers on the right show disturbance caused by 
penetration of wider fingers from reservoirs above and below. (a) Slanted instability that occurs 
when wide fingers of figure (a)  are subjected to stronger gravity by raising tank upright. Dark fluid 
is salty and less sweet, light fluid contains more sugar and less salt. 
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matches the experimental conditions. Mathematically, the value of I ,  in (3.5) 
corresponds to the wavenumber of the initial finger pattern, and g in RT in (3.10) 
corresponds to 0 = 90". From the definition of l2 in (2.17) we can write 

where gr is the reduced value of g for the initial pattern. Then 

Two sets of calculations were made, one with the equilibrium wavenumber 1; for 
l2 in (4.2) and the other with the wavenumber of maximum growth rate l& substituted 
into (4.2). The remaining parametric values are 7 = 5 and g/gr = 6. In all calculations 
the most destabilizing perturbations occurred for k = 0 and were non-oscillatory. The 
growth rate was nearly proportional to W, and N = 10 sufficied to give a value correct 
to 1 % .  

Though the details of the calculations differ with different parametric values, the 
most important result, viz. that wide cells are unstable, is independent of the specific 
values used. For that reason we give results only for the most unstable perturbations 
and then discuss the results in terms of physical processes that are consistent with 
the observed (and calculated) behaviour. The more general stability problem is 
discussed in $4.2. 

The fist stability calculation was carried out with 1; for Z2 in (4.2) and with W = 10. 
The instability with maximum growth rate gives p = 1.68 and occurs for k = 0 and 
m = 1.74. The second was based on I& for Z2 in (4.2) and with W = 10. The most 
unstable mode has k = 0, m = 4.15 and the growth rate is p = 2.27 . For the present 
set of parameters but with m = 0 convection by the fingers has no effect and the 
system reduces to the problem of the previous section where the maximum growth 
rate (figure 1 )  is A, = 0.024. Since p is much larger than A,, the basic finger pattern 
can be considered quasi-steady and the present stability analysis is pertinent. 

The instabilities for the two sets of calculations are qualitatively the same. With 
1: as the basic wavenumber two modes, one symmetric, the other antisymmetric 
with respect to a finger boundary, have nearly the same growth rate though the 
antisymmetric one grows marginally faster. A plot of the density field encompassing 
two rising and two sinking fingers and four cycles in z is shown in figure 4 (a) for the 
antisymmetric mode and in figure 4(b) for the symmetric mode. The amplitude of 
the perturbation was chosen to be the same as that of the density variation of the 
wide fingers. The effect of the mean gradients is not included. The light and dark 
regions correspond to those of figure 3(b) .  (In figure 4 the boundary between light 
(less salty, sweet) and dark (salty, less sweet) fluid is where the perturbation density 
vanishes. In the experiment light and dark are based on the refractive index of the 
fluid and the division is not at all as sharp.) Although the two modes have nearly 
the same growth rate, only the antisymmetric mode is observed experimentally 
(figure 3b). 

With 1: for the basic wavenumber the antisymmetric mode is definitely the more 
unstable. In this case the initial finger is narrower and the antisymmetric mode 
admits an interpenetration of alternate disturbances into the middle of each finger 
whereas the symmetric perturbations bump heads. Therefore, the latter are less 
effective in redistributing the stabilizing property (see below). Since 1, corresponds 
to a wider basic finger the perturbation near each finger boundary is less affected by 
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FIQURE 4. Unstable perturbation on long, wide fingers. Amplitude of density perturbation 
taken equal to that of bmic fingers. (a) Antisymmetric mode; (a) symmetric mode. 

the disturbances from the finger boundaries to the right and left so the growth rates 
of the symmetric and antisymmetric modes are more nearly the =me, as mentioned 
above. 

A tentative physical explanation of the instability wae included in the paper by 
Taylor & Veronis (1986). Initially the salt and sugar distributions very sinusoidally 
in the horizontal. When the Hele-Shew cell is brought upright, the value of g is 
increased and the buoyancy-layer thickness is decreased. Since the salt adjustment 
across the boundary of a rising and a sinking finger takes place on the scale of a 
buoyancy layer, the salt distribution will be relatively uniform near the middle of 
each cell. A perturbation with a vertical lengthscale of the order of the buoyancy layer 
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-4.30 

-2.15 

*.I5 

4.30 - 

Am 
(equation 

RP m 2, (2.23)) Fe 

1.5 0.90 2.18 0.086 0.707 
2.0 0.85 1.06 0.025 0.82 
2.5 0.93 0.632 0.0046 0.91 

TABLE 1. Vertical wavenumber and growth rate of the most unstable perturbation for w = 10,7 = t 
and three values of R,,. Last two columns give A, and 1p, for basic fingers. 
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FIGURE 5. Same aa figure 4(&) but wavelength of basic fmgers corresponds to maximum growth 
rate in unperturbed state. Antisymmetric mode only. 

can penetrate into the uniform salinity region near the centre of the finger and lose 
its salt anomaly by diffusion. However, the sugar anomaly remains, since K~ < K ~ .  
Thus, less-sweet water (the dark tongues) will penetrate upward into the sweet, 
less-salty light regions and sweeter water (light tongues) will penetrate downward 
into the salty, less-sweet dark regions. 

The results of the calculations are consistent with the physical mechanism that is 
proposed. The narrower cells associated with 1, rather than 1, become unstable to 
a mode with m = 1.74 since the buoyancy-layer scale is a larger proportion of the 
finger width. In  calculations with g/gr = 10 the basic finger is wider, the buoyancy 
scale is relatively smaller and the most unstable mode has m = 6.3. As expected, the 
slope of the inclined perturbations decreases (m increases) as the basic finger width 
increases. 

Holyer (1983) obtained horizontally penetrating instabilities for a fluid with 
(density) compensating horizontal gradients of salt and heat superposed on vertical 
gradients. For a situation analogous to the present one with salt fingers, she found 
that cold fresh fluid penetrated horizontally up into warm salty fluid and vice versa, 
just as we have described here. The same physical mechanisms are present in the two 
systems even though the specific configurations differ. Hence, both systems lead to 
horizontal interleaving. 
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FIGURE 6. Long wiggly fingers in a Hele-Shaw cell exhibit instability obtained from stability 
analysis. The wiggly structure is enhanced by looking at the figure at an angle from below. 

4.2. Fingers with preferred width 
The stability analysis of most interest is based on fingers corresponding to maximum 
growth rate in the basic state. If these are unstable, one ought not to observe long 
straight fingers. The calculation in this case is for g/gr = 1.0. A value of N = 5 
sufficies to give the growth rate with an error of less than 1 % 

In all of the calculations the disturbance with the maximum growth rate was 
non-oscillatory, antisymmetric about the finger boundary, and was associated with 
a characteristic exponent (k) of zero. The corresponding values of m andp, along with 
the values of A, and Fr for the basic finger, are listed in table 1 for three different 
values of Rp and with W = 10. For larger values of W, m remains nearly the same and 
p grows proportionately. As W becomes very small, the growth rate tends toward the 
value A,. 
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The most interesting conclusion, of course, is that straight fingers are unstable to 
perturbations with a vertical variation. In the three calculations reported in table 1 
the vertical wavenumber is close to unity. Thus, the instability once again has a 
vertical scale of the order of the buoyancy-layer thickness (which is the dimensional 
scaling for the vertical wavenumber). 

Figure 5 illustrates the density structure of the most unstable mode for the case 
with Rp = 2.5. Once again the perturbation amplitude is the same as the amplitude 
of the density variation of the basic fingers. The lateral penetration of the pertur- 
bation is considerably smaller than it is when the basic fingers are too wide. (The 
vertical scale in figure 5 is compressed; that of figure 4 is expanded. Thus, the 
difference in penetration is greater than a comparison of the diagrams would suggest.) 

The instability derived here leads to long wiggly fingers. A photograph of an 
experiment that shows such a structure appears in figure 6 .  These fingers had grown 
from an array of wide fingers after the tank had been raised upright from an inclined 
position. The instability to narrower fingers evolved during the first hour and a 
pattern of long, nearly straight fingers emerged. The photograph shows the configur- 
ation twenty-four hours later. The wavy columns indicate that the non-oscillatory 
instability derived for fingers of ‘optimum ’ width equilibrates at finite amplitude. 

Holyer (1984) concluded that straight, two-dimensional fingers in a regular fluid 
are unstable to a non-oscillatory disturbance of the same type for the heat-salt case, 
though her corresponding vertical wavenumber is smaller (m = 0.30). For the 
salt-sugar system she concludes that the most unstable mode is oscillatory with 
m = k = 0.5. Her most unstable non-oscillatory mode grows at about two-thirds 
that rate. Inertial terms are important in Holyer’s analysis, as can be seen from the 
dependence of her results on the Prandtl number. In  the Hele-Shaw system the 
Prandtl number is effectively infinite. 

As in Holyer’s calculations there are other unstable modes in addition to the ones 
reported here. However, the growth rates for those cases are invariably much smaller 
than the non-oscillatory one with k = 0. 

4.3. Narrow $fingers 

The same type of instability occurs when the finger width is smaller than that 
corresponding to maximum growth rate. Experimentally this configuration can be 
realized by letting the fmgers evolve in an upright Hele-Shaw cell and then inclining 
the apparatus. With g/gr = 0.5, Rp = 2 and W = 10 a perturbation with k = 0 and 
m = 0.4 grows the fastest (p = 0.26). The vertical lengthscale is again about the size 
of the buoyancy-layer thickness and the lateral penetration is weaker. 

5. Discussion 
The foregoing analysis of the structure and the stability of fingers is based on the 

assumption that they are infinitely long. For parts of the analysis that approximation 
is reasonable. In  particular, the conclusion that most fingers are unstable to a 
perturbation with a vertical scale of the order of the buoyancy-layer thickness is not 
likely to be altered by treating finite, but very long, fingers. The fact that the 
instability is the one with the largest growth rate means that observed quasi-steady 
salt fingers are very likely to be wiggly rather than straight. 

In  retrospect, the derived instability is not surprising. The key feature of salt 
fingers is the buoyancy layer which transports the stabilizing property across the 
finger boundary from the finger where it hinders instability to the finger where it helps 
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the instability. Long straight fingers make use of the horizontal transport across the 
finger wall. The unstable perturbations add vertical structure so that the same 
physical process can transport the stabilizing property vertically to the adjoining cell 
across the wave boundary. Evidently, the cost involved in the small horizontal 
excursion of the fluid (horizontal flow does not tap the potential energy of the system) 
is more than compensated for by the increased transport of the stabilizing property. 
Perhaps the most significant quantitative result is that the preferred vertical 
wavenumber always corresponds to the buoyancy-layer thickness, which, as Howard 
& Veronis (1987) have shown, maximizes the buoyancy flux. The stabilizing property 
is redistributed by the buoyancy layer so that the gravitational stability of the overall 
system is reduced. This physical picture, fortified by the quantitative results of the 
stability analysis, should help to explain the observed wiggly structure of salt fingers. 
However, figure 3(a) shows that not all salt fingers are wiggly. Observations of the 
evolving salt-finger zone indicate that the salt fingers of optimum scale are not 
generated by local horizontal processes but rather by formation of larger scales in 
the transition region between the finger zone and the boundary reservoirs. These 
large-scale features then penetrate vertically from the transition region through the 
finger zone and eventually to the other reservoir. It appears that these penetrating 
fingers move rather quickly through the fluid (at least for the reservoir differences 
in the observed experiments) and that the instability derived in this article does not 
have time to establish itself before its entire supporting structure is displaced by the 
penetrating feature. 

These two contrasting pictures indicate that one cannot talk about the salt-finger 
phenomenon aa if it  were a single process. An initial configuration of uniform mean 
gradients will be susceptible to the instability analysed here. But a finger zone 
evolving from an initial two-layer state is much more likely to be dominated by 
vertically penetrating, transient features. This latter phenomenon is almost certainly 
what one should expect to occur at either the top or the bottom of interleaving water 
masses in the ocean. Most laboratory experiments are started from some kind of a 
layered initial state and probably also evolve via transient penetration. 

The beginnings of a treatment of fingers of finite height is contained in an article 
by Howard & Veronis (1987). The approximation of vertically uniform fingers 
is retained in the zero-order state when T = 0, and the role of the buoyancy layer 
is at the core of the analysis. Then a diffusive correction (7 > 0) describes the 
concentration of the destabilizing property (S) in the vertical direction in each finger. 
The focus in that study is on the vertical structure required by the horizontal 
differences between fingers of finite height. 

It seems to me that a real understanding of the salt-finger phenomenon will come 
only after the role of the transition region is analysed. The really important problem 
is the transient evolution of the system rather than the stability of a quasi-steady 
state. It is a difficult problem because both horizontal and vertical processes must 
be taken into account and the analysis must involve the very different physics of the 
finger zone and of the reservoirs. 
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